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Abstract. The reflection coefficient of one-dimensional disordered conductors is asymptoti- 
cally a pure phase, when the sample length is much larger than the localisation length. 
We study the stationary distribution of this reflection phase for tight-binding chains with 
diagonal disorder, i.e. random site potentials. We derive the Dyson integral equation 
obeyed by this distribution and relate i t  to the Lyapunov exponent and the integrated 
density of states. This general approach allows us to consider then more specifically two 
types of disorder. In the case of a binary alloy, where the potentials take two values, the 
distribution of the reflection phase is shown to have generically an infinity of power-law 
singularities related to the occurrence of periodic patterns of potentials. This phenomenon 
produces divergences in the distribution when the strength of disorder exceeds some 
energy-dependent threshold. We also obtain an exact expression for the distribution of 
the reflection phase for a symmetric exponential distribution of potentials. This non-trivial 
solvable model allows us to examine analytically various properties of the phase distribu- 
tion, such as the anomalies which occur at weak disorder. 

1. Introduction 

The reflection phase of one-dimensional disordered conductors has been the subject 
of several recent works [l-41. One of the main motivations of these studies was the 
need to understand how the phases average as the sample length gets larger, and 
whether their distribution becomes flat, i.e. uniform, in the limit of a very long conductor. 
Such a ‘phase averaging’ hypothesis has indeed often been made, at least in an implicit 
way, throughout the history of localisation theory [5-71 in the derivation of various 
scaling laws concerning e.g. the moments of the distribution of the resistance. 

The first work which addresses the question of the distribution of a reflection phase 
is, to our knowledge, by Sulem [8] who dealt in fact with the propagation of waves 
in macroscopic random media. This author considered a continuum model and realised, 
both analytically and numerically, that the phase of the reflection coefficient approaches 
a non-trivial distribution in the limit of a large sample thickness, in this language, but 
that this limit distribution is far from being uniform in general. References [ 1-31 have 
dealt with similar questions in the specific problem of one-dimensional quantum 
conductors. Reference [ l ]  considers the most general model, where each unit of the 
conductor brings three new random parameters, and shows by general arguments that 

0305-4470/90/ 101717 + 18$03.50 0 1990 IOP Publishing Ltd 1717 



1718 C Barnes and J M Luck 

the limit distribution of the phases has no reason to be uniform. Reference [2] considers 
more specifically the one-dimensional tight-binding Anderson model. The authors 
show in particular, mostly through numerical work, that the phase distribution becomes 
uniform only in the weak disorder regime, except at the band centre, which plays a 
very special role. More recently, [3] provides analytical results on the distribution of 
the reflection phase for a continuum model in the weakly localised regime, where the 
sample length is less than the localisation length. Also in this case the distribution is 
found not to be uniform, and this effect has some consequences on the moments of 
the resistance distribution. 

In a recent paper [4] one of us, in collaboration with J Pendry, has studied the 
problem by means of a systematic perturbation theory, which yields the Fourier 
coefficients of the phase distribution, through a novel formalism involving an infinite 
transfer matrix. This work has shown in particular that the distribution of the phases 
becomes generically uniform as the strength of the disorder vanishes. In the case of 
the tight-binding model this occurs for every energy, except at the band centre, where 
the distribution has a non-trivial limit for a vanishingly small disorder. This result of 
an infinitely degenerate perturbation theory is in fact related to the so-called ‘anomalies’, 
described by several authors [9-121, which affect the weak disorder expansion of 
quantities like the Lyapunov exponent and the density of states of the Anderson model, 
and other disordered systems in one dimension. 

The present work aims at giving a more accurate and rigorous description of the 
distribution of the phase of the reflection coefficient. We have limited ourselves to the 
tight-binding model with diagonal disorder, i.e. random site potentials, in the strongly 
localised regime, where the length of the disordered region of the sample is by far 
larger than the localisation length. In this regime, the reflection phase reaches a 
non-trivial stationary, or invariant, distribution. We investigate in particular the regular- 
ity properties of this distribution, as well as its dependence both on energy and on the 
strength of disorder. The present approach is a global one, which does not rely on 
perturbation theory, nor on any approximation scheme. 

The content of this paper is as follows. In section 2 ,  we recall some general 
definitions and formalism for the tight-binding model. We show that the distribution 
of the reflection coefficient, and of related quantities, obeys a linear integral equation, 
of a type first studied by Dyson [ 131 in the context of one-dimensional random systems. 
We also derive expressions for the Lyapunov exponent and the integrated density of 
states of the problem in terms of the invariant phase distribution. Section 3 is devoted 
to the case of a binary distribution of the random site potentials. This case is very 
particular since the distribution of the reflection phase usually has an infinity of 
power-law singularities, which show up as infinitely high peaks as soon as the strength 
of disorder exceeds some energy-dependent threshold. This novel phenomenon is 
related to the occurrence of divergences in the density of states of e.g. harmonic chains 
with random masses, first described by Halperin [ 141. By adapting an approach used 
by one of us, in collaboration with Th M Nieuwenhuizen [ lS] ,  to study Halperin’s 
‘island frequencies’, we obtain a complete labelling and quantitative description of the 
power-law singularities in the present problem. Section 4 presents what is certainly 
the only non-trivial distribution of potentials for which the problem is exactly soluble. 
For this symmetric exponential distribution, with an arbitrary width, we can derive 
the distribution of the reflection phase in an exact way. Some of the various possible 
applications of this result are discussed. Section 5 presents a short summary and 
conclusion. 
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2. Generalities 

In this section, we recall some general formalism for the tight-binding model of 
disordered one-dimensional conductors. Our main goal is the study of the distribution 
of the reflection coefficient of very long random chains. We derive an integral equation 
a la Dyson [13] for the invariant distribution of the reflection phase in this regime. 
This formalism will be used extensively in the next sections. 

We consider an ensemble of disordered conductors described by the tight-binding 
Schrodinger equation 

O n + l + O n - l + ~ n O n =  EO,. (2.1) 

Each chain consists of a central disordered region of N atoms (1 c n C N ) ,  for which 
the site energies E ,  are independent random variables, with a common probability 
density p (  E ) .  This region is connected to two semi-infinite perfect leads, where the E ,  

vanish. 
Let RN and TN denote the reflection and transmission coefficients (amplitudes) 

for an electron beam incident from the right, with wavevector (-k), and hence energy 

E =2cos  k O<k<.rr. (2.2) 

This means that we have by definition 

" +RN = {  TY e-lkfl  for n s l .  
for n 2 N 

(2.3) 

Let us now introduce the usual transfer-matrix formalism, which will also be used 
hereafter. Equation (2.1) can be recast in the following form 

where the transfer matrix M ,  reads 

M,=(  E - &  y ) .  
Hence the propagation of the wavefunction along the chain is described by a product 
of non-commuting 2 x 2  transfer matrices. We also define the Riccati variable Y, 
through 

@ , + I  Y, =-. 
@ n  

The tight-binding equation (2.1) is then equivalent to the recursion relation 

1 
yn-I 

Y , =  E - E , - - ,  

We now show that the reflection coefficient R N  is related in a simple way to the 
Riccati variable YN at the last site N of the disordered section of the chain, and 
therefore that the R N  also obey a recursion formula. To do so, we compare the chain 
defined above, with N impurities, and the chain with ( N  - 1) impurities obtained by 
removing the last random site energy (E& '  = O ) .  Let RN and R N - ,  denote the reflection 
coefficients of these two conductors. Equation (2.3) implies that both chains have the 
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same Yo= e-ik and therefore the same Y , ,  . . . , Y N - ,  , but different values of Y N .  
According to the same relations, the YN of the chain with N impurities is related to 
R N  by 

e-ik + R~ eik Y,  = 
1+RN 

Equation (2.7) then yields the following recursion relation 

e21kRN-, + i s N (  1 +e2"RN-,) 
1 - iSN( l  +e21ARN-,) 

RN = 

with the notation 

E N  S N  =- 
2 sin k '  

(2.10) 

Equation (2.9) expresses how the reflection coefficient of a disordered chain evolves 
when an extra impurity is added to it. The initial condition to this recursion is clearly 
R,, = 0, since no random region is present in this case. When N increases, the trans- 
mission TN decays to zero because of localisation effects. More quantitatively, it is 
well known that ITA,I-e-YN, where y denotes the Lyapunov exponent, or inverse 
localisation length, to be discussed below. As a consequence, the unitarity relation 
IRN12+ I TN12 = 1 implies that R N  has asymptotically unit modulus for large N :  it is a 
pure phase. 

Throughout the following, we assume that the random conductors are long enough 
to be deeply in the localised regime. This condition reads N y  >> 1. We define the 
reflection phase O N  by 

R ,  = ele, - - ? T < O N < ? T .  (2.11) 

We also introduce the following variable, which will be convenient in the technical 
developments 

ON . RN-1 - COS k -  Y,v 
t,,., = tan - = -1 - - 

2 R N + l  s i n k  ' 
(2.12) 

In terms of this quantity, the recursion formulae (2.7) and (2.9) assume the form 

(2.13) 

with the notation 

r = tan k. (2.14) 

The main advantage of (2.13) is that it involves only real quantities in a natural way. 
When the sample length N becomes large, the reflection phase O N  is asymptotically 

distributed according to a probability density P (  O), which is stationary, i.e. independent 
of N, and hence invariant under the random recursion relation (2.9). This invariant 
probability measure can be alternatively described in terms of the Riccati Y-variable 
or the r-variable. Let S( Y )  and Q ( r )  denote the corresponding densities. Equation 
(2.12) implies that these quantities are simply related through 

Q ( t )  = (1 +cos O ) P ( O )  =sin k S (  Y ) .  (2.15) 
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The existence of an invariant measure for the one-dimensional Anderson model, 
as well as some of its regularity properties, have been investigated rigorously in [ 161. 
The present work clearly does not pretend at any mathematical rigour on this point. 

We will use the t-variable in the technical developments throughout the following 
in order to avoid dealing with complex numbers and to benefit from the simplicity of 
the transform (2.13). The distribution Q ( t )  obeys an integral equation, of the type 
first derived by Dyson [ 131, which expresses its invariance under the random transfor- 
mation (2.13). This property reads 

(2.16) 

where t and U represent t N  and t y - ,  respectively and SD denotes the Dirac delta 
function, which enforces the condition 

(2.17) 

(2.18) 

where the prime denotes differentiation WRT t, and 6 and E are related by (2.10). 
Equation (2.18) will be referred to as the Dyson equation of the problem, and used 
extensively in the next two sections. 

It will be shown in section 3 that the probability densities P ( 0 )  and Q ( t )  are very 
singular quantities when the site potentials have a binary distribution. We prefer 
therefore to introduce now the following integrated densities, or distribution functions 

(2.19) 

These quantities are continuous functions in any circumstance. They are not differenti- 
able when the densities themselves are divergent. 

We end this section by discussing the relationship between the probability density 
P (e),  or its equivalent formulations Q( t )  and S (  Y ) ,  and two other quantities of much 
physical interest, namely the Lyapunov exponent and the integrated density of states. 
To do so it is advantageous to define, for a complex energy E, a characteristic function 
(or complex Lyapunov exponent) dZ(E) [ 171 through 

(2.20) 

where the principal branch of the complex logarithm is used. It can be shown (see 
e.g. [17]) that the limit of this quantity as E goes to the real axis reads 

fi(E*iO)= y ( E ) + i a H ( E )  (2.21) 

where y(  E )  is the above mentioned Lyapunov exponent (inverse localisation length) 
of the problem, and H ( E )  denotes its integrated density of states ( IDOS) ,  i.e. the 
fraction of energy eigenvalues in the spectrum which are larger than some E. This 
rather unconventional definition is required by the fact that the off-diagonal terms in 
(2.1) have a positive sign. 
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The above relations between the variables YN, R N ,  ON, and tN yield the following 
expressions 

I n ( E )  = 

=I 
where it is understood 

In Y S ( Y ) d Y  

e - i k  + e i h + i H  

In P( 8 )  d 8  
l + e i B  

1n(cos k - t sin k ) Q (  t )  dt  ( 2 . 2 2 )  

that the invariant probability densities are evaluated for an 
energy E with an infinitesimal imaginary part. 

3. The binary alloy 

In this section we study the distribution P ( 8 )  of the reflection phase in the case of a 
binary symmetric distribution of the site potentials: every E,, is either + E  or - E ,  with 
equal probabilities 1 / 2 .  

It will turn out that P ( 0 )  is a very singular quantity in this case, with an infinity 
of power-law singularities under generic circumstances. As we shall see below, the 
mechanism responsible for this novel singular behaviour is closely related to the 
following phenomenon, first discussed by Halperin [ 141, who considered binary random 
harmonic chains, made of light and heavy atoms. The density of states of this system 
becomes infinite at the eigenfrequencies of finite clusters or ‘islands’ of light masses 
in a ‘sea’ of heavy ones. These singularities occur at high frequency, where heavy 
masses damp excitations, and only yield divergences of the density of states when the 
disorder strength (here, the mass difference) exceeds some threshold. 

A similar effect occurs in the present problem, where the two different site energies 
+ E  play in some sense the part of the atomic masses. We will first present a heuristic 
and descriptive study of the phenomenon, before going to a more rigorous analysis, 
based on the Dyson equation ( 2 . 1 8 ) .  

Consider the periodic chain +-+-+-. . . made of an infinite repetition of the 
simple cell or pattern (+ -). Throughout this section, the symbols + and - will 
denote the signs of the site potentials E, .  This simplest example of a pattern with 
period 2 will turn out to be physically the most important one. Provided the energy 
E lies in a gap of this periodic structure, the infinite periodic chain exhibits only two 
well defined reflection angles, namely 8, and 8 - ,  corresponding to both types of atoms 
at which the reflection coefficient can be measured. These phases are entirely deter- 
mined by the structure of the basic pattern, and by the energy E. 

The simplest way of realising this is to consider the transfer matrix M of the cell, 
defined as the product of the two elementary transfer matrices of the form (2.5) 
associated with the atoms of the cell. In the present case we have 

M = ( E ’ - ~ 2 - 1  & - E )  
& + E  - 1  

Since M has unit determinant, its eigenvalues are determined by its trace: tr M = 
E ’ -  ~ ~ - 2 .  If  the energy is such that Itr MI > 2 ,  the eigenvalues of M read exp(*K), 
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up to a sign, where K is defined by 

Itr MI = 2 cosh K. (3.2) 

Hence the wavefunction grows essentially like @,, - exp( nK),  with two different ampli- 
tudes, according to the parity of the site label n. The Riccati variable defined in (2.6) 
admits therefore two limit values, namely Y+ and Y - ,  which are related to the values 
6* of the reflection phase by (2.8), (2.11) and (2.12). 

Consider now all chains for which the disordered region ends up with the repetition 
of any finite number L of contiguous cells (+-). It is expected that, for L large 
enough, the reflection phase 6 of such a chain will be very close to either 6, or e-. 
In a more quantitative way, since the eigenfunction inside the segment made of the L 
cells (+ - )  is a linear combination of exp(nK) and exp(-nK), it can be argued that 
the difference 16 - 6+l is of the order of the ratio of both solutions taken at the end of 
the segment, namely exp(-2KL). On the other hand, the probability of having such 
a configuration is proportional to 2-2L. By eliminating the number L of cells between 
the above estimates, we predict that the distribution function W p ( 6 ) ,  defined by (2.19), 
has a power-law singularity 

(3 .3)  

Such a singularity corresponds, via a formal differentiation, to a power-law behaviour 
16 - 6,l"-' for P( 6) itself. Hence the probability density exhibits a divergency, an 
infinitely high peak, only when we have (Y < 1, i.e. K > In 2. Since the magnitude of 
K is a measure of randomness, this means that there is a threshold in the disorder 
strength for peaks to appear. When the exponent (Y is larger than unity, only some 
derivative of P( 6)  diverges at 6 = 6,. 

The heuristic argument just described also predicts that the distribution of the 
phase exhibits similar but weaker singularities, characterised by the same exponent a, 
at all the values of the phase corresponding to adding one, two, etc atoms of any type 
at the end of the large region made of (+- )  cells. We will also come back to this 
point in a more detailed way later in this section. 

Moreover, periodic arrangements of larger patterns, such as for instance (+--) 
and (++-), which have period p = 3, up to a cyclic permutation, also produce their 
own sets of singularities whenever the energy lies in a gap of the associated spectra. 
These are also power-law singularities, with an exponent a given by 

p In 2 
2 K  

cy=- (3.4) 

where p denotes the period of the cell, and K is still related to the trace of the associated 
product of p transfer matrices through (3.2). It is nevertheless expected on physical 
grounds that the singularities connected with the (+-) cell will be the most important 
ones. The numerical work presented below fully confirms this assertion. 

We now turn to a more accurate analysis, based on the Dyson equation (2.18), of 
the singularities in the distribution P( e), or equivalently Q( t )  or S( Y). Here again, 
we prefer to use the language of the t-variable, for the sake of simplicity. The present 
study is an adaptation of the work by Nieuwenhuizen and Luck [15]  on the density 
of states of harmonic chains. We will present the full derivation in the case of the 
(+-) cell, which is both the simplest and the most important case. 
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For the binary distribution of site potentials under consideration, (2.18) reads 

2Q(t)  = Ig:(t)lQ[gJt)l+ Ig'(t)lQ[g-(t)l (3.5) 

where g,( t )  denote the function g,( t )  defined in (2.17), with 6 = i & / ( 2  sin k )  according 
to (2.10). The transcription of the above heuristic argument goes as follows. The limit 
reflection angles c9+ and 0- correspond by definition via (2.12) to variables t ,  and t -  
such that 

t+  = g-( 1 - )  t -  = g+( t + ) .  (3.6) 
A direct evaluation yields in the present case 

(3.7) 

Let us also introduce the notation 

A +  = g:( t+) A -  = g'( t - ) .  (3.8) 
Both of these quantities are positive. The occurrence of singularities in Q( t )  at t = t ,  
appears clearly through the following argument, inspired by [15]. Since all values of 
the probability density Q( t )  are necessarily positive, the Dyson equation (3.5) implies 
that we have 2Q( t i )  5 A,Q( t - )  and 2Q( t - )  3 A-Q( t + ) ,  and hence 4Q( t I )  5 A + A _ Q (  t = ) .  
Therefore, if the product 

A =  A + A _  (3.9) 
is larger than 4, the only way out is that both values of Q are either zero or infinite! 

A quantitative description of the actual behaviour of Q( t )  is obtained by linearising 
the Dyson equation around t = t ,  as follows. If Qsg( t )  denotes the singular parts of 
Q ( t )  around t , ,  (3.5) implies that we have, up to first order in the variations x and y 

2Qsg( t+  + X) (3.10) 

The general asymptotic solution of these equations has the form of a power law, 
modulated by periodic amplitudes, namely 

t -  + A+x) 2Q,,( t -  + y )  = A-Q,,( t ,  + A - y ) .  

where the value of the exponent a 

2 In 2 
In A 

cy=- 

(3.1 1) 

(3.12) 

can be rewritten after a good deal of manipulation as 

In 2 
K a=- with ~ ' - - E ~ = 2 ( c o s h  K - l ) = 4 s i n h 2 ( K / 2 )  (3.13) 

in full agreement with the previous result (3.3). 
The amplitudes A' are two periodic functions of their argument, with unit period, 

and the superscript f denotes the sign of x or y.  The occurrence of periodic amplitudes 
is a common feature of a large variety of disordered systems with a discrete, e.g. binary, 
distribution of the random couplings [15,18-201. As usual, the above linear analysis 
predicts their existence and their period, but not their specific form. 
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An integration of (3.1 1) shows that the distribution function WO( t )  of the t-variable, 
defined in (2.19), also has a power-law singular component around t f  

(3.14) 

The B' are two periodic amplitudes, with unit period, which are essentially primitives 
of the A'. Hence the B' are slightly more regular mathematical objects. It can indeed 
be argued, by analogy with [ 181, that they are always continuous functions, but they 
are nowhere differentiable when a < 1. Some plots of these amplitudes will be presented 
later on. 

The results (3.11) and (3.14) show that the distribution Q ( t )  is never a smooth 
function, even at weak disorder ( E  + 0). Indeed, for any small value E of the site 
potentials, the energy interval IEl< E around the band centre lies in a gap of the infinite 
(+-) structure. In this whole range, (3.12) and (3.13) predict a finite value of the 
exponent a. Hence the distribution functions W,(O) and WO(' )  are not n ( a )  times 
differentiable, where n ( a )  denotes the integer part of a + 1. The derivatives of that 
order are indeed infinite at t , .  In particular, at the band centre ( E  = O ) ,  (3.13) reads 
E = 2 sinh(K/2).  Hence the order n ( a )  of the singularities blows up at weak disorder 
as (In 2 ) / ~ .  

As mentioned previously, the distribution P (  0 )  and Q( t )  exhibit a divergence, or 
a 'peak', only when CY < 1. This condition can be recast in the form of a threshold 
value for the disorder E ,  namely F > E ( ) ,  with E ; =  E'+ 1/2. At the band centre, we 
have thus a threshold q,= l/v% 

Let us now show how 'secondary peaks' arise. There are actually an infinity of 
values of t ,  besides t,, where the distribution Q ( t )  has singularities with the same 
exponent a, modulated by similar periodic amplitudes. Indeed, by inserting the singular 
behaviour (3.11) into the RHS of the Dyson equation (3.5), we can show that a similar 
singular component is present at t = t,, = f+(  t,) and t = t - -  =f-( t - ) ,  where thef, denote 
the inverses of the g, 

t + T  

1 - t T  
f * (  t )  = 1 2 6  +- (3.15) 

These functions coincide, as they should, with the transforms entering the recursion 
relation (2.13). The singularities at these two values are caused by chains for which 
the disordered region ends up with ( + - ) L + + ,  and ( - - + I L - - ,  respectively, for large 
L, whence the notation. By iterating the procedure, we obtain analogous singularities 
at an infinity of values, such as t _ _ -  = f+(f-(t-)), t+-+, =f+[fT(f-( t-))], etc. These 
values of t describe the reflection phases of patterns of the form (+-)" U or (-+)" V, 
where U and V denote arbitrary finite 'binary words' made of the symbols + and -. 

We now compare the above analytical results with some numerical data. These 
have been obtained by the enumeration method already used extensively in [15, 18,191. 
This approach consists of enumerating in an exact way all the 2N different configurations 
of a finite disordered chain with N sites, and of calculating the associated reflection 
phase by iterating (2.13). We start from an arbitrary initial condition, not necessarily 
the 'physical' one. This choice is indeed fully irrelevant. The data can then be for 
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instance accumulated in a histogram. The only error of the method is a systematic 
one, due to the finiteness of the sample length N. Large computers allow us to handle 

Figure 1 shows a histogram of the distribution P(8) of the reflection phase in a 
typical case with an exponent a smaller than unity. The values k /  H = 0.45 and E = 1 
indeed yield a =0.7556. A large number of deeply pronounced peaks are clearly 
visible: besides the largest two peaks corresponding to 8, and e- ,  all of them are 
‘secondary peaks’ as defined previously. We have labelled the largest of them according 
to the notation explained above, 

N = 20 - 22. 

- n  - X / 2  0 X I 2  Jl 

8 
Figure 1. Histogram of the distribution P ( 0 )  of the reflection phase, obtained from the 
exact enumeration method, for the binary potential distribution with E = 1, and k / n  = 0.45, 
so that the exponent (I equals 0.7556. The histogram contains 1000 bins; units along the 
vertical axis are arbitrary. The labelling of the most visible ‘secondary peaks’ is described 
in the text. 

0.3 

0.2 

- 
.U - 
p3 

0.1 

0 
-6 -4  - 2  0 

5 
Figure 2. Plot of the periodic amplitude B - ,  against its argument f = In(-x)/ln .2. The 
parameters k / n  =0.45, and E = 1.4, are such that a =0.5431. 
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-6 - L  - 2  0 

I 
Figure 3. Same ds figure 2 ,  for k !  TT = 0 . 2 7 ,  and F = 1.7, so that a = 0.6777 

Figures 2 and 3 show plots of the periodic amplitude B -  of the singularity of the 
integrated distribution function UTQ( t ) ,  defined in (?.14), against its argument 6 = 
In(-x)/ln '1, extracted from data for t around t,. In  both cases we have a < 1 ,  in 
such a way that the plotted functions are continuous but nowhere differentiable. Such 
curves always seem aesthetically appealing, at least to the authors. 

4. An exactly solvable model 

This section is devoted to the case where the site energies e N  have a symmetric 
exponential distribution of width W 

1 
p(e)=--e ' ! ' .  

2 w  

The remarkable property of this distribution is that all the quantities of interest: 
the distribution of the reflection phase P(B), the Lyapunov exponent y ( E )  and the 
IDOS H ( E ) ,  can be evaluated exactly following a technique introduced by Nieuwen- 
huizen [21], which consists of an  exact integration over the given random variables 
(here, the site energies). This powerful method has been applied to a large variety of 
disordered physical systems in one dimension (see e.g. [22-251). 

For reasons that will become clear in the following, it turns out to be advantageous 
to introduce the logarithmic transform 

D ( z )  = Q( t )  d t  ln(z - t )  (4.2) I 
of Q ( f ) ,  the invariant probability density introduced in section 2. Here again, the 
principal branch of the complex logarithm is used. This definition ensures that D ( z )  
is analytic in the upper half plane ( Im z > O), and continuous as z approaches the real 
axis. Furthermore, as a direct consequence of (2.16), we have 

D ( z ) = [  p ( e ) d E  Q ( t i d r l n ( z - 2 6 - -  1 - tr (4.3) 
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By rewriting the differential element p (  E )  d e  = r( 6 )  d6, with 

2 sin k 
W 

P -PIai p=- r ( 6 ) = - e  
2 

(4.4) 

and reshuffling the argument of the logarithm, we obtain the fo..Jwing integral equation 
for the function D ( z )  

I z-26-7. ) + l n ( z - 2 6 + 1 / r )  5 r ( S ) d 6  [ (  1 + ( z - 2 6 ) 7  D ( z )  + D( 1/ 7 )  = (4.5) 

The key point which allows an  exact solution is as follows. 6 only enters the integrand 
through the combination z - 26. Hence, if we evaluate D’( z) from (4.5), the differenti- 
ation WRT z can be converted into a differentiation WRT 6 inside the integral, which 
can in turn be compensated by an integration by parts. More explicitly, if we define 
the partial integral over positive values of S 

+ln(z - 26 + 1/7)  ] (4.6) 
2 - 2 6 - 7  

1 + ( z  - 2 6 ) r  
D+( z) = Io+= /3 e-@’’ d 6  [ D( 

the procedure just described leads to 

(4.7) 

This equation can be iterated to get an expression for D:( z ) .  A very analogous formula 
holds for the integral D-( z) over negative values of 6. We end u p  with the second-order 
differential-difference equation for D( z)  

We have thus reduced the whole problem of the determination of the distribution 
P (  e )  to that of solving (4.8). Fortunately enough, this equation can be further simplified 
as follows. Since it relates values of the unknown function D at z and at z, = 
(z - r ) / ( l  + ZT), we are led to perform the change of variable 

z - i  . l + y  
1-Y 

y = z + i  z=1- (4.9) 

which maps the upper half plane (Im z >  0) onto the unit disc l ) ,  and maps z, 
onto y ,  = eCziky, where k is the wavevector. We also define a new unknown function 
E ( Y )  by 

1 - e-2ik 
D ( z )  = E ( y )  -In( 1 - y )  -In ~ 

2i ’ 
(4.10) 

The asymptotic behaviour D ( z )  = In z + O( l / z )  for large z leads to 

E ( l ) = l n ( 2 i  sin k)-ik.  (4.11) 

On the other hand, (2.22) implies 

C l =  D ( l / ~ ) - l n s i n  k =  E(e-2ik)- ln(2is in  k)+2ik.  

Equations (4.11) and (4.12) allow us to show that (4.8) is fully equivalent to 

(1 - y ) 4 ~ ” ( y )  -2(1 - y ) 3 ~ ’ ( y )  - ( 1  - Y ) ~  = - p ’ [ ~ ( y )  - ~ ( e - ” ~ y ) + ~ , ]  

(4.12) 

(4.13) 



The distribution of the reflection phase of disordered conductors 1729 

where 

R , = R - i k  (4.14) 

denotes the 'random part' of the characteristic function S Z ,  i.e. the difference between 
SZ and its value 0, = ik in the absence of disordered site potentials. 

The requirement that E ( y )  is analytic in the unit disc and continuous at its boundary 
determines in a unique way both the function E and the complex constant 0,. If we 
insert into (4.13) the, necessarily convergent, series expansion 

(4.15) 

we obtain the following recursion relation 

Here a,,,, is the Kronecker symbol, and Ac,, denotes the following five-term difference 
operator acting on the c, 

Ac, = ( n + l ) ~ , + ~ + ( n  - l ) c n ~ 2 - 2 ( 2 n + l ) c , + , - 2 ( 2 n  - l )cn- ,+6nc ,  (4.17) 

with the convention that c, = 0 for n S 0. 
Four boundary conditions are therefore necessary to specify the c,  entirely. 

Equation (4.16) taken for n = 0, 1 ,  and 2, the three cases where the equation is not 
homogeneous, provides two boundary conditions and determines S Z ,  as well. The two 
missing conditions come from considering the behaviour of c, for n + m .  Indeed, 
assuming that c ,  is a slowly varying function of n for large n, and forgetting about 
oscillatory terms proportional to e-2ink, we approximate (4.16) and (4.17) as 

(4.18) 

Four independent solutions of this homogeneous equation read asymptotically 

c ,  - exp(wJ;;) w = ( * I  * i ) m  (4.19) 
where both i signs are independent of each other. The two values of w with a positive 
real part yield a growing solution, and have to be discarded. The requirement of 
regularity at infinity thus fixes the last two boundary conditions. 

We have therefore shown that (4.16) and (4.17) determine the function E in a 
unique way. We now have to express the quantity of main interest, namely the 
distribution of the reflection phase, in terms of E ( y ) .  The definition (4.2) of D ( z )  
implies that the distribution Q i t )  is given by the following boundary value 

--rrQ(t) = Im D'( z=  t + i O ) .  (4.20) 
This value of z corresponds to y = -elH. Expressing Q( t )  in terms of P( 0 )  according 
to (2.15) and D ( z )  in terms of E ( y )  according to (4.10), we obtain the final result 

2 r P ( 0 ) =  1 + 2  (--l)'-' Re(c, e""). (4.21) 

Hence the c, are essentially the Fourier coefficients of the distribution of the reflection 
phase. These complex quantities are defined as the unique solution of (4.16) and 
(4.171, with the appropriate boundary conditions, as discussed above. We shall now 
examine analytically some properties of this exact solution, and present some numerical 
illustrations of it. 

n z l  
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Our  exact solution provides an analytical form for the fall-off of the c,,, and hence 
of the regularity properties of the probability density P ( 0 ) .  The behaviour of the c, 
at large n is given by (4.19) where, as explained above, only the two decreasing solutions 
have to be considered. Hence the c,, decay more rapidly than any power of the index 
n, and the distribution P ( 0 )  is very smooth (differentiable infinitely many times), in 
strong contrast with the case of the binary alloy studied in section 3. To be complete, 
let us mention that P (  0 )  is not an analytic function at 0 = +T. I t  can indeed be shown, 
e.g. by inserting the estimate (4.19) into (4.21) and evaluating the sum by the saddle- 
point method, that the distribution of the reflection phase has the following singular 
part around 0 = *T 

2 sin k 
P,,(@) - exp( - * T i  w). (4.22) 

This exponentially small singularity lies 'on top of '  a very smooth background. The 
mechanism responsible for this singular contribution is in fact quite simple. If the 
N t h  atom has a very large site energy E , % ,  either positive or negative, then the reflection 
phase O N  differs from * T  only by a small amount (2  sin k) / leh  1; such an  event occurs 
at any site with probability exp(-/e,  I /  W). Equation (4.22) is recovered by eliminating 
e N  between these two estimates. We are therefore led to expect an analytic distribution 
of the reflection phase whenever the site energies are bounded, and have a rather 
smooth (e.g. continuous) probability distribution. 

The exact solution derived above also permits to study the distribution P (  0)  in the 
weak disorder limit ( W + 0) in a simple and systematic way. This regime has already 
been studied in [4], using perturbation theory. Because of the prefactors ( 1  -e-""k) 
in the RHS of (4.16), the values of the wavevector k which are rational multiples of T 

have to be considered separately. These are the cases where the wavefunction in 
absence of randomness is commensurate to the lattice. 

Consider first a generic value of the wavevector not rationally related to T.  It can 
easily be shown from (4.16) and (4.17) that c, and c2 are proportional to W' 

i e lh  w' 
-- -2 

c, = 
B2(  1 - e-"' ) - 4 sin3 k 

2 - -i e"hW' 
c2 -- 

p2(  1 - - 8 sin' k cos k 

(4.23) 

that cj and c4 are proportional to W4, and more generally c2,,-, and c2,, are proportional 
to W2" for a small disorder width W. These results were already obtained in [4]. 

This simple behaviour at weak disorder is modified for resonant values of the 
wavevector, rationally related to T.  It is already known that the Lyapunov exponent 
and  the density of states present anomalies [9-121 in their weak disorder expansion 
in such cases. The perturbative treatment of the present problem also has to be 
modified [4]. 

The strongest anomaly occurs at the band centre ( E  = 0, k = 77/2). It is indeed 
clear from (4.23) that the expansion of c2 is singular at that point. The band centre 
is actually the only case for which the c, d o  not vanish in the W +  0 limit. Thus the 
distribution P (  0 )  does not become trivial (uniform) at weak disorder. More precisely, 
it can be derived from (4.16) and (4.17) that the c, are proportional to W 2  for odd 
values of n, but have non-vanishing limits for even n. These non-trivial values are 
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given by the following three-term recursion 

( n  + 1 ) ~ , , + *  + ( n  - 1)~, , -2  + 6nc, = a,,? (4.24) 

with c, = 0 for n S 0, as previously. The solution of (4.24) gives the universal distribution 

(4.25) 

of the reflection phase at  the band centre for any weak disorder. The first few values 
of the c, read 

c2 = 8.6107 x lo-' ~ 4 = - 1 . 1 0 9 4 ~  lo-' c6 = 1.5872 x lo-'. (4.26) 

The c, fall off as (-1)"'2(1 for large n, implying in particular that Po(@)  is an  
analytic function. The present derivation, starting from an  exact solution, is by far 
shorter than those using perturbative approaches [4,9]. 

I 

m 
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e 
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1 

I I 
01 I I I I 

- n  - X I 2  0 n12 n 

e 
Figure 4. Plot of the distribution of the reflection phase, for the exactly soluble model, at 
the band centre, for different values of the disorder width W, indicated on the curves. 

I I I 

e 
Figure 5. Same as figure 4, for a generic point of the spectrum: k / r r=0 .13 .  
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For other resonant values k = r p / q  of the wavevector, where p and q are two 
coprime integers, some of the coefficients c, vanish as a smaller power of W than 
generically. This anomalous behaviour is also most easily studied from the exact 
solution. The smallest index which exhibits an anomaly is n = q :  the leading power 
of W 2  in c, is less by one unit than generically, in agreement with a recent systematic 
study of anomalies [ 121. 

We end up this section with some numerical illustrations of our exactly soluble 
model. It is indeed easy to solve the central equations (4.16) and (4.17) numerically. 
A first step consists of finding two independent general solutions, say c,,~ and c,,~,  of 
the homogeneous equations (for all n 3 3), which decay for n + W. In a second step, 
one matches the amplitudes a ,  and a2 so that the linear combination c, = ale,, + a2c,,,  
obeys (4.16) also in the inhomogeneous cases: n = 0, 1, and 2. These are three equations 
for the three unknowns, namely a , ,  a?,  and R,, the 'random part' of the characteristic 
function. As explained in section 2, this last quantity yields, according to (2.21), the 
Lyapunov exponent and the integrated density of states of the problem as by-products 
of the computation, for any energy E in the spectrum [-2, +2] of the perfect leads. 
Let us just mention that the characteristic function R for E outside this interval could 
also be obtained through a slight adaptation of the present analysis. 

Figure 4 shows plots of the distribution P ( 8 )  for different values of the disorder 
strength W, at the band centre ( E  = 0). In this case, the Fourier coefficients c, are 
real, and P ( 8 )  is an even function of 8. Figure 5 shows an analogous series of plots 
for a generic value of energy, corresponding to k/ r = 0.13. As disorder becomes 
strong, the distribution is more and more peaked towards *r: this is indeed a general 
property, which would hold for any distribution of the site potentials. 

In order to illustrate the phenomenon of the anomalies present in the weak disorder 
limit, Figure 6 presents plots of the first two (real) Fourier coefficients c, and c?, at 
the band centre, against the width W. In agreement with the above discussion of 
anomalies, c1 vanishes as W 2 ,  whereas c2 has a non-trivial anomalous W + 0 limit, 
given by (4.26). Also note that this coefficient vanishes for some finite value of W. 

0'25 r--- 

W 
Figure 6. Plot o f  the first two Fourier coefficients c ,  and c2 of the distribution of the 
refection phase at the band centre. The arrow indicates the 'anomalous' limit of the second 
coefficient at a vanishing disorder. 
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5. Summary and conclusion 

We have reported on the study of the distribution of the phase of the reflection 
coefficient of disordered conductors, described by the tight-binding model. The chains 
are made of a central region, with arbitrary diagonal disorder, connected to two 
semi-infinite perfect leads. 

The formalism developed in section 2 for an arbitrary distribution of the site 
potentials shows how the reflection phase is simply related to the Riccati variable, 
defined in (2.6), which has been extensively used in analytical studies of one- 
dimensional disordered systems. This approach shows in a natural way that the 
reflection phase possesses a non-trivial stationary distribution P (  e), in the regime 
where the sample length is much larger than the localisation length l / y ( E ) .  This 
distribution, or rather an equivalent quantity Q( t ) ,  obeys a linear integral equation 
(2.18), of a type studied first by Dyson [ 131. Another consequence is that the Lyapunov 
exponent ? ( E )  and the integrated density of states H ( E )  of the problem have simple 
expressions in terms of P (  e), provided the energy E is in the spectrum of the perfect 
leads. 

We have then proceeded to examine the distribution P ( 0 )  of the reflection phase 
for two special types of disorder, namely the binary alloy, with site potentials * E ,  and 
an exactly soluble model, with a symmetric exponential distribution of potentials. 

The case of the binary alloy, where the site potentials assume the values * E ,  with 
probability 1/2, is considered in section 3. We have shown that long repetitions of 
periodic patterns of potentials are responsible for the existence of an infinity of 
power-law singularities in the reflection phase distribution. This effect is similar to 
the phenomenon, first described by Halperin [14], which affects the density of states 
of random harmonic chains, with light and heavy atomic masses. The predominant 
singularities are associated with repetitions +-+-+- . . . of the pattern (+-) with 
period two. Patterns with higher periods produce much weaker singular contributions. 
The exponent a which characterises these sets of singularities is obtained in an exact 
way. I t  depends both on the disorder strength E and on energy, so that divergences, 
‘peaks’, in P ( 0 )  are actually observed only when disorder exceeds some energy- 
dependent threshold. The numerical results of an enumeration procedure show that 
the positions of all the most visible peaks present in this data are explained by the 
analytic approach. We also present plots of the periodic amplitudes, which modulate 
the power-law singularities. Such a singular behaviour of P (  e)  will generally occur 
whenever the distribution of the site potentials contains some discrete component. 

We consider in section 4 a special class of distributions of the site potentials, namely 
the symmetric exponentials, for which the whole problem is exactly soluble. The 
solution, namely the determination of the Fourier coefficients of the distribution P( e), 
as well as y ( E )  and H ( E ) ,  follows a method introduced by Nieuwenhuizen [21]. This 
method, which reduces the problem to solving a difference equation (4.16), (4.17) can 
in principle be extended to a wider class of potential distributions P ( E ) ,  symmetric or 
not, where a polynomial in E multiplies the exponential of (4.1). 

This exact solution allows a detailed investigation of various properties of the phase 
distribution. We find that P ( 0 )  is differentiable infinitely many times, and fails to be 
analytic only because of an essential singularity at 0 = fx, related to the occurrence 
of arbitrarily large site potentials. It is therefore expected that P (  e)  is analytic for any 
bounded and continuous distribution of the site potentials. We also investigate the 
behaviour of the Fourier coefficients c ,  of P ( 0 )  at weak disorder, and show how the 
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peculiarities of their perturbative expansion at the band centre, described in [4], are 
related to the anomalies which are known [9- 121 to affect the weak disorder expansion 
of quantities such as the Lyapunov exponent for any commensurate wavevector, namely 
any value of k rationally related to T. 

We finally want to mention that it would be worthwhile to generalise some of the 
present results to multichannel quasi-one-dimensional systems. In the strongly localised 
regime in such a geometry, there is total reflection, and hence a unitary reflection 
matrix. The eigenvalues of that matrix are therefore pure phases, and the object of 
interest is the distribution of these phases. 
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